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Abstract. The J/ψ differential cross sections in pp collisions at 7TeV is shown, as a function
of transverse momentum and in several rapidity ranges, on the basis of a fraction of the data
collected by CMS in 2010 [1]. The B to J/ψ fractions will also be presented, and compared to
other measurements as well as to theory calculations.
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INTRODUCTION

Heavy-flavour and quarkonium production at hadron colliders [2] provides an important
test of the theory of Quantum Chromodynamics (QCD). J/ψ mesons are classified as
prompt when produced directly in the proton-proton collision or indirectly via decay of
heavier charmonium states, and non-prompt when produced in the decay of b hadrons.

Different J/ψ polarizations cause different muon momentum spectra in the laboratory
frame, and consequently different cross-section results. Due to this effect, for prompt
J/ψ mesons the final results of this measurement are quoted for different polarization
scenarios.

DATA SELECTION

The analysis is based on a data sample recorded by the CMS detector [3] in pp collisions
at a centre-of-mass energy of 7TeV . The sample corresponds to a total integrated
luminosity of L = 314± 34nb−1. J/ψ mesons are reconstructed in the µ+µ− decay
channel.

Simulated events were used to compute the acceptance and to derive corrections
to the efficiencies. Prompt J/ψ mesons have been simulated using Pythia 6.421 [4],
events with b-hadron pairs were also generated with Pythia and the b-hadrons decayed
inclusively into J/ψ using the EvtGen [5] package. Final-state bremsstrahlung was
implemented using PHOTOS [6, 7].

J/ψ RECONSTRUCTION

Muons were reconstructed by matching tracker and muon chambers signals; opposite
charge muon pairs were then selected and a vertex fit was performed. The J/ψ yield



was obtained from a maximum likelihood fit to the invariant mass distribution with a
Crystal-ball function [8] for the signal plus an exponential for the background.

Acceptance has been estimated from the simulation by taking the ratio of recon-
structed over generated J/ψs, as a function of dimuon transverse momentum pT , rapid-
ity y and polarization λθ :

A(pT ,y;λθ ) =
Ndet(pT ,y;λθ )
Ngen(pT ,y;λθ )

(1)

Several polarization scenarios were considered, where the J/ψ is unpolarized or fully
polarized, both longitudinal and transverse in Collins-Soper and Helicity frames [9].

Several systematic uncertainties have been investigated: the acceptance was computed
using the dimuon momentum or the generated J/ψ momentum to estimate the effect
of FSR, J/ψ spectra were generated using Pythia and CASCADE [10], the fraction
of J/ψ from b-hadron decay has been taken from this measurement and it was varied
inside its uncertainty, muon momentum was varied inside the calibration error. Total
systematic error ranges from 1.0% to 4.5% in the different transverse momentum and
rapidity regions.

Reconstruction efficiency is given by the product of single muon efficiencies, a cor-
relation factor and the vertex recontruction efficiency. Single muon efficiency was esti-
mated by a “Tag and Probe” method, by selecting dimuons in the J/ψ mass region: one
muon passing a tight selection is the tag, while the other one is the probe. The correlation
between efficiencies has been computed with the simulation. The vertex reconstruction
efficiency was estimated in a very pure sample of dimuons selected in the data.

ε(J/ψ) = ε(µ
+) · ε(µ

−) · (1+ρ) · εvertex (2)

Systematic uncertainties over the J/ψ efficiency include the uncertainty over the
correlation factor ρ , estimated by varying the J/ψ spectrum according to various
models, and the single muon efficiency statistical error. Total systematic error ranges
from 2.0% to 14.6% .

The product of acceptance and efficiency ranges from 0.016±0.002 to 0.445±0.013 .

INCLUSIVE CROSS SECTION

The differential cross section has been determined as a function of tranverse momentum
and rapidity from the number of J/ψs, taken from the dimuon invariant mass fit and
corrected with acceptance and efficiency, and the integrated luminosity and bin sizes:

d2σ(J/ψ)
d pT dy

·Br(J/ψ → µ
+

µ
−) =

Ncorr(J/ψ)
L ·∆pT ·∆y

(3)

Systematic uncertainty was estimated by varying the functions used in the mass
fit; figure 1 shows the differential cross-section in 3 rapidity bins, for the different
polarization scenarios; the 11% luminosity error is not included.

The total cross section integrated for 6.5GeV/c < pT < 30GeV/c and |y|< 2.4 in the
unpolarized scenario gives:



FIGURE 1. J/ψ differential cross-section. Luminosity uncertainty 11% is not shown.

σ(pp→ J/ψ +X) ·Br(J/ψ → µ
+

µ
−) = 97.5±1.5(stat)±3.4(syst)±10.7(lumi)nb

(4)

PROMPT AND NON-PROMPT CROSS SECTION

J/ψ produced in b-hadron decays were discriminated by computing the “proper dis-
tance” in the transverse plane between the primary vertex and the dimuon vertex:

`J/ψ = Lxy ·mJ/ψ/pT (5)

The `J/ψ distribution has been fitted with a sum of 3 functions describing the prompt
and non-prompt component plus the background; the fit was performed simultaneously
together with the dimuon mass in each transverse momentum and rapidity bin. As fitting
function for the decay distance a resolution function, built with gaussians, convoluted
with the true `J/ψ distribution given by the simulation was used.

Fig. 2 shows the fraction of J/ψ coming from b decay, compared with CDF re-
sults [11] obtaind with pp̄ collision at 1.96TeV .
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FIGURE 2. Non-prompt J/ψ fraction, compared with CDF results
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FIGURE 3. Differential prompt J/ψ cross-section, compared with different models

Fig. 3 and 4 show the prompt and non-prompt differential cross sections. The prompt
yield was compared with Pythia [4] event generator, CASCADE [10], as well as with
the Colour Evaporation Model (CEM) [12, 13]. At forward rapidity and low pT the
calculations shown in Fig. 3 underestimate the measured yield.
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FIGURE 4. Differential non-prompt J/ψ cross-section, compared with different models

The non-prompt J/ψ differential production cross sections have been compared with
calculations made with the Pythia [4] and CASCADE [10] Monte Carlo generators,
and in the FONLL [14] framework. The agreement with FONLL and CASCADE is
excellent, while Pythia tends to underestimate the yield below 5GeV/c in pT .
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